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Abstract

In this paper, we reproduce FLASHATTENTION
(Dao et al., 2022), an IO-aware method for cal-
culating exact attention that addresses limita-
tions in the memory usage and bandwidth in-
efficiencies of standard attention mechanisms.
We recreate the memory-optimized attention
kernels in Triton (Tillet et al., 2019) and eval-
uate the runtime and memory usage against
several baselines, including the standard Py-
Torch scaled dot-product attention (SDPA), a
naive baseline implemented using explicit ma-
trix multiplications and softmax operations in
PyTorch, and a CUDA implementation imple-
mented by Dao et al. (2022). Furthermore, we
conduct a realistic next-token-prediction bench-
marking evaluation of our kernel implemen-
tation on WikiText-103 (Merity et al., 2017)
and introduce an implementation of our Tri-
ton FLASHATTENTION kernel in the form of
Multi-Query Attention (Shazeer, 2019).

1 Introduction

1.1 Background and Related Work

Transformers have revolutionized the way that mod-
els process sequential data by replacing recurrent
layers in RNNs with self-attention, enabling paral-
lel computation and improved contextual represen-
tation across entire input sequences enabling break-
through improvements in applications in fields like
text and audio processing (Vaswani et al., 2017).
However, the default self-attention kernel used in
transformers faces a significant limitation in its scal-
ability to longer context lengths due to quadratic
asymptotic growth in terms of both computation
and memory usage.

Many approximate attention methods have been
proposed to reduce the compute and memory re-
quirements of attention. These methods range
from low-rank approximation (Choromanski et al.,
2021), to sparse attention (Beltagy et al., 2020),
learned compression (DeepSeek-Al et al., 2024),

chunking (Dai et al., 2019), and combinations
(Chen et al., 2021). However, in part due to the in-
creased implementation complexity, these methods
have not gained widespread adoption, and the ma-
jority of large training runs still use exact attention.
Moreover, these methods often produce subtle in-
accuracies that degrade model quality (Vyas et al.,
2020), and while they often improve the computa-
tion complexity to linear or near-linear in sequence
length, many of them do not provide a wall-clock
speedup over standard attention in practice (Daras
et al., 2020).

One significant reason for the lack of meaningful
wall-clock runtime reduction is because approxi-
mate methods focus on reducing the compute op-
erations required while not adequately addressing
overheads from I/O operations. However, compute
operations have outpaced memory operations on
modern GPUs, and as such, most transformer ar-
chitectures are memory-bottlenecked (Dong et al.,
2025). In particular, repeated reads from rela-
tively slow high-bandwidth memory (HBM) and
writes to fast on-chip shared random access mem-
ory (SRAM) incur substantial latency and band-
width costs, leading to underutilization of compute
units and limiting overall speedup, even when the
theoretical compute complexity is reduced (Ler-
oux et al., 2024). As recent models scale to han-
dle context lengths of tens or even hundreds of
thousands of tokens, the inefficiencies of both stan-
dard and approximate attention become increas-
ingly prohibitive, both in training and inference
settings (Yazdanbakhsh et al., 2022; Duman Keles
et al., 2023).

In response, Dao et al. (2022) propose FLASHAT-
TENTION, an exact attention algorithm which cal-
culates attention with a constant factor more com-
putations than a naive algorithm, but far fewer (sub-
quadratic) memory accesses. The primary goal of
FLASHATTENTION is to eliminate the quadratic
memory reads and writes between high-bandwidth
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memory (HBM) and on-chip SRAM that are re-
quired by naive implementations of self-attention.
While the standard approach materializes the en-
tire attention matrix and stores intermediate values
(such as softmax-normalized scores) in HBM for
reuse during the backward pass, FLASHATTEN-
TION avoids this by recomputing key intermediate
quantities in a memory-efficient way. We outline
the algorithm in Section 2.

FLASHATTENTION has gained widespread
traction in both research and production environ-
ments due to its ability to significantly reduce
memory usage while preserving the exactness
of standard attention. Its efficiency has enabled
faster training and inference, particularly for
models operating on long sequences, where
traditional attention mechanisms become pro-
hibitively expensive. Building on the original
algorithm, FlashAttention-2 introduced further
improvements, such as support for variable-length
sequences, dropout, and enhanced numerical
stability (Dao, 2024). These enhancements
have led to FlashAttention-2’s integration into
the PyTorch core library as the backend for
torch.nn.functional.scaled_dot_product_
attention, making it a default choice for efficient
attention in modern transformer architectures
(PyTorch Foundation, 2024). Given its growing
impact and widespread deployment, a careful
replication of FLASHATTENTION is important
for validating its claims, understanding its
performance characteristics, and assessing its
practical implications under different hardware
and workload conditions.

1.2 Our Contributions

Following Algorithm 1 in Dao et al. (2022), we

implement the full FLASHATTENTION kernel (for-

ward and backward passes) in the Triton program-
ming language (Tillet et al., 2019), which provides

a high-level interface for writing GPU kernels. Our

contributions are:

* Triton-based implementation. A complete and
modifiable Triton reimplementation of the orig-
inal FLASHATTENTION kernel, designed to be
easily integrable into PyTorch-based transformer
architectures.

* Further improvements. We introduce addi-
tional optimizations over the original kernel, in-
cluding pipelining and device-specific autotuning
for improved throughput and memory efficiency.
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HEM: 1.5TB/s (40 GB)

:12.8 GB/s
(>1TB)

Memory Hierarchy with
Bandwidth & Memory Size

Figure 1: (Dao et al., 2022) GPU memory hierarchy
illustrating the latency and bandwidth characteristics of
different tiers, from on-chip SRAM to off-chip GPU
HBM and CPU DRAM. The widening gap between
compute throughput and memory access cost is a key
bottleneck in transformer attention mechanisms. Num-
bers chosen are those for the A100 GPU.

* Benchmarking on A100. We provide compre-
hensive benchmarks for various FLASHATTEN-
TION implementations and show performance
for our kernel forward pass better than the orig-
inal CUDA implementation and competitive to
PyTorch’s scaled dot product attention.

* Multi-query attention (MQA) support. We
extend the kernel to support MQA, a variant
where keys and values are shared across heads
to reduce memory and compute. Unlike most
off-the-shelf implementations, which do not na-
tively support MQA, our kernel includes full
support along with, to our knowledge, the first
set of performance and memory benchmarks for
FlashAttention-style MQA.

2 FlashAttention

2.1 Hardware Characteristics

We describe a few key characteristics of modern
GPUs that motivate FLASHATTENTION.

Memory hierarchy. Modern GPUs feature a hi-
erarchical memory architecture comprising fast,
low-capacity on-chip SRAM (including registers
and shared memory) and slower, high-capacity off-
chip High Bandwidth Memory (HBM). In Figure
1 we list compute throughput and memory capac-
ity for the A100. Given that compute throughput
on GPUs far exceeds memory access bandwidth
(Kao et al., 2023), it is crucial to maximize data
reuse within SRAM and minimize costly transfers



between SRAM and HBM.

Kernel execution model. In the GPU execution
model, each kernel is designed to perform a single
operation by loading input data from High Band-
width Memory (HBM) into on-chip SRAM, execut-
ing computations, and writing the results back to
HBM. Kernel fusion converts multiple operations
into a single kernel, thus saving HBM reads/writes
that occur between the operations.

Performance regimes. GPU workloads generally
fall into two performance regimes: compute-bound
and memory-bound. Compute-bound operations
are limited by the availability of arithmetic units
and their throughput, whereas memory-bound op-
erations are constrained by memory bandwidth and
latency. Attention mechanisms, as used in trans-
former architectures, are predominantly memory-
bound due to their high demand for memory ac-
cess relative to computation, particularly during
the key-query dot product and subsequent softmax
operations. FLASHATTENTION serves to rectify
this issue.

2.2 Standard Attention Implementation

The self-attention mechanism in transformers com-
putes the output as a weighted sum of values,
where the weights are determined by the scaled
dot-product of queries and keys (Vaswani et al.,
2017). Given an input matrix in X € RV*? where
N is the sequence length and d the hidden dimen-
sion, the inputs are projected into query, key, and
value matrices Q, K,V € RV*? The standard
attention formula for each head is

S:QKTGRNXN,
0 =PV ¢ RVxd

where the softmax is applied row-wise. While the
number of FLOPs is O(N2d), the dominant per-
formance bottleneck on modern GPUs arises from
memory usage and bandwidth. In the standard im-
plementation of attention, intermediate matrices
such as the attention scores S and softmax outputs
P are of size O(N?) and cannot fully reside in fast
on-chip SRAM due to its limited capacity. Instead,
they are computed in tiles in SRAM and repeat-
edly written to and read from HBM during both
the forward and backward passes. This results in
O(N? 4 Nd) HBM memory accesses (Theorem
1), which often exceed the cost of the actual com-
putations. As a result, the standard implementation
is memory-bound, with compute units frequently

P = softmax(S) € RV*Y,

stalling while waiting for data to be transferred;
this overhead becomes particularly prohibitive as
sequence lengths increase (Ivanov et al., 2021).

2.3 FlashAttention: Algorithm

FLASHATTENTION aims to reduce the number
of expensive HBM accesses by fusing attention
score computation, softmax normalization, and
value aggregation into a single pass over the input
data, using tiling to fit intermediate results into
SRAM (Dao et al., 2022). The input matrices
Q. K.,V € RV*? gre assumed to reside in HBM,
while computations are performed block-by-block
using SRAM.

Tiling. The input sequence is partitioned into
blocks of size B, and attention is computed in
tiles. Rather than forming the full attention ma-
trix S = QK T, the algorithm processes blocks of
Q; against all blocks K, V ;. For each such pair,
we (1) compute partial scores

_ax;
T

and (2) maintain row-wise softmax statistics for
numerical stability:

BxB
Sij GRX,

m(x) := maxz;, £(x):= Z ti—m(x)
6;ti—m(x)

softmax(x) = I

As softmax couples all keys (columns of K), the
algorithm incrementally computes the output by
maintaining: (1) the running max m; for each row
of scores, (2) the scaled softmax sum ¢; across
blocks, and (3) the accumulated output O; (Mi-
lakov and Gimelshein, 2018; Rabe and Staats,
2022).

When processing multiple score blocks sequen-
tially, say for inputs x(M, x? ¢ R, we concate-
natex = [x(1)  x(?)] € R?B. The softmax is then
decomposed as:

m(x) = max(m(x\V), m(x?)),
0(x) = en(x)—m(x) | o(xM)

4 em(x®)—m(x) .g(X(Q))

which ensures that scaling across multiple blocks

yields correct results. The output block is then

updated with the scaled values: O; + O; +
eSis "V ; and normalized at the end as O; < %.
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Figure 2: Left: FLASHATTENTION uses tiling to load blocks of Q and K" into SRAM, avoiding materialization
of QK" € RV*N in HBM. Right: FLASHATTENTION fuses multiple memory-bound kernels into a single
compute pass; Top: standard attention performs separate memory loads and stores between compute stages; Bottom:
FLASHATTENTION fuses operations into one kernel, minimizing HBM traffic. Figure 2b is heavily inspired by He

(2022).

The tiling process is illustrated in Figure 2a,
where only a block of queries Q; and keys K; are
loaded into on-chip SRAM at a time. The attention
scores S;; are computed in SRAM, and softmax
statistics (m;, ¢;) are incrementally updated across
tiles. This avoids materializing the full attention
matrix QK" in memory, reducing HBM traffic
from O(N? + Nd) to O(N2d?/M).

Recomputation and Backward Pass. Rather
than storing the full attention matrix S or softmax
matrix P, FLASHATTENTION caches only the
row-wise softmax statistics (m;, ¢;) for each query
block. During the backward pass, these statistics
are used to recompute S and P on-the-fly in
SRAM from the original Q, K, and V blocks.
This approach eliminates the need to store
O(N?) intermediate values in HBM and serves
as a targeted form of gradient checkpointing,
specifically optimized for the structure of the
attention mechanism.

Kernel fusion. A major performance benefit of
FLASHATTENTION comes from kernel fusion,
which fuses multiple stages of the attention
computation — including the matrix multiplication,
softmax computation, and weighted value aggre-
gation — into a single GPU kernel. In contrast,
standard implementations invoke separate kernels

for each stage, requiring intermediate results like
the attention matrix and softmax outputs to be
written and read between each step. By fusing
these operations, FLASHATTENTION avoids these
intermediate memory transfers and instead keeps
all intermediate data in on-chip SRAM throughout
the computation of each tile. This dramatically
reduces kernel launch overhead and HBM traffic,
enabling a much higher effective throughput.
This strategy is illustrated in Figure 2b, where
standard attention (top) incurs repeated memory
accesses between stages, while FLASHATTENTION
(bottom) fuses the computation into a single pass,
drastically reducing memory traffic and improving
throughput. Note that without kernel fusion,
the FLASHATTENTION algorithm is entirely not
workable: each of the tile-by-tile computations of
the attention matrix and softmax would be written
back to HBM, thus maintaining O(N?) HBM
memory traffic and defeating the purpose of the
algorithm’s IO-aware design.

Masking. Masking is done tile-wise: each tile of
attention scores is multiplied by the corresponding
mask slice before softmax. Most masks used in
practice (e.g. causal and key padding) exhibit
strong spatial contiguity, and thus a major perfor-
mance boost (1.8x for causal attention, see Fig. 3)
can be achieved by skipping computations of tiles



which are fully masked.

I0-Complexity of FlashAttention. With the
FLASHATTENTION algorithm already laid out in
full, we introduce a key theorem regarding the
efficiency of FLASHATTENTION in comparison
to the standard matrix multiplication attention
algorithm in regards to memory accesses.

Theorem 1. (Dao et al., 2022) Let N be the se-
quence length, d be the attention head dimen-
sion, and M be the size of GPU SRAM where
d < M < Nd. Then, we have that the standard
matrix multiplication attention algorithm requires
O(Nd + N?) HBM accesses, whereas FLASHAT-
TENTION only requires ©(N?d*M ') HBM ac-
cesses.

Proof. See Appendix A: Algorithm Details. [

In fact, O(N2d?M~") is asymptotically opti-
mal; proof can be found in Dao et al. (2022).

2.4 Extension: Further Improvements

We implement two improvements over the exist-
ing FLASHATTENTION architecture: fine-grained
pipelining and a Triton-driven autotuner (Tillet
et al., 2019). In pipelining, the scheduler partitions
the attention matrix into tiles and overlaps three
stages—loading Q K V blocks, computing dot-
products, and writing outputs—so memory fetch
for tile t+1 is issued while tile ¢ computes, hiding
latency. Concurrently, the autotuner samples a grid
of kernels that vary tile dimensions, pipeline depth,
warp count, and optional value-prefetch, measures
runtime, and retains the fastest candidate for sub-
sequent calls. To keep the search tractable, con-
figurations are pruned by a rule-based filter keyed
on head dimension and data type (plus tile/warp
limits), and we seed the search with a few hand-
picked A100/H100 configurations to avoid cold-
start penalties. The chosen kernel is memoized and
reused whenever later calls share the same signa-
ture, ensuring steady speed-ups on both NVIDIA
A100 and H100 GPUs without hand tuning.

3 Experiments and Results

We evaluate the run a suite of experiments on a
MIG-partitioned A100 GPU. Note that a MIG
slice only has access to 1/7-th of the GPU’s
compute and memory capability, and thus achieves
substantially lower throughput compared to

full-GPU benchmarks reported in prior work.

Experimental Setup. All runtime and memory
experiments were conducted with a batch size of 4
and head dimension of 64, unless otherwise speci-
fied. These settings were held constant across all
experiments to ensure fair comparisons. We use 16
attention heads for MHA and 16 query heads for
MQA (with shared keys and values).

3.1 Runtime Analysis

We validate the performance of our implementa-
tion of FLASHATTENTION for multi-head atten-
tion. Benchmarks on different settings show that
our FLASHATTENTION implementation achieves
significant speedup compared to naive implemen-
tations and comparable with current optimized
implementations in the PyTorch library (PyTorch
Foundation, 2024). Notably, our implementation
is easily modifiable to suit subtly different at-
tention mechanisms (for instance, arbitrary atten-
tion masks — we already provide support for key
padding masks), while PyTorch’s implementation
only supports causal masking. We present the
FLOPs/s. We calculate FLOPs by the formula:

4 - seqlen® - head dimension - number of heads

With a causal mask, we divide this number by 2 to
account for the fact that approximately only half of
the entries are calculated.

Our results, shown in Fig. 3, are consistent with
previous work such as Dao (2024). In particular,
the original CUDA implementation of FLASHAT-
TENTION has a throughput of 13 TFLOPs/s for
non-causal and 10-11 TFLOPs/s for causal atten-
tion. Noting that throughput typically scales lin-
early with the number of streaming multiprocessors
(SMs), our numbers correspond to 91 TFLOPs/s
and 70-77 TFLOPs/s on a full A100 GPU, which
matches the 91 TFLOPs/s and 76 TFLOPs/s re-
ported by Dao (2024). Our implementation is com-
petitive with existing implementations, performing
better than the CUDA kernel and less than 1.5x
slower than Pytorch’s scaled dot product attention,
which uses the much improved FlashAttention-2.
Our improvement over the original CUDA kernel is
likely due to the additional performance optimiza-
tions of pipelining and autotuning for the A100
GPU. Notably, our kernel is implemented in Triton,
which typically does not match the performance
of hand-optimized CUDA kernels; this highlights
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Figure 3: Runtime (TFLOP/s) comparison of 16-head attention forward pass in non-causal and causal settings.

the effectiveness of our additional optimizations
despite the higher-level abstraction.

3.2 Memory Usage Analysis

We compare the maximum memory usage of our
implementation to a standard matrix multiplica-
tion implementation, the contemporary PyTorch
scaled dot product implementation, and the CUDA
implementation of FLASHATTENTION, shown in
Figure 4. As expected, all FlashAttention-style
methods consume significantly less memory than
the naive baseline, thanks to their sub-quadratic
space complexity. In addition, our implementation
outperforms that of the original CUDA FLASHAT-
TENTION kernel and equal to PyTorch’s scaled-dot
product attention, despite being implemented at a
higher abstraction level. Our slight improvement
over the CUDA kernel is likely due to our auto-
tuning selecting the optimal configurations for our
GPU, in particular the choice of tiling sizes.

3.3 Language Modeling

We evaluate how well our FLASHATTENTION ker-
nel programmed in Triton (Tillet et al., 2019) per-
forms in a realistic setting. Namely, we measure
the perplexity, over the course of epochs, achieved
by a multi-head transformer architecture (Vaswani
et al., 2017) that uses either naive PyTorch attention
with standard matmul operations for the forward
and backward passes or our Triton kernel, as it
learns the task of next-token prediction over the
WikiText-103 corpus (Merity et al., 2017). The
specific transformer architecture we implemented
consisted of 12 layers with 8 attention heads. We
tokenize the WikiText-103 dataset using OpenAl
tiktoken (OpenAl, 2022) and subject to our com-
pute requirements, we train the transformer on

10% of the WikiText-103 training corpus over 5
epochs. We present our results for the validation
perplexity achieved at the end of each epoch by
both transformers in Figure 5. Despite the initial
divergence at epoch 0, with the default attention
transformer achieving a noticeably lower perplex-
ity than the Triton FLASHATTENTION transformer
at 155.06 compared to 202.60, respectively, we
have that convergence of validation perplexities
is nearly achieved at the fifth epoch (epoch 4)
with minimally-differing perplexities of 70.85 and
73.33, respectively.

3.4 Extension: Multi-Query Attention

We extend FLASHATTENTION to handle multi-
query attention (MQA), a variant of the standard
multi-head attention mechanism. In MQA, while
each attention head has its own query projection,
all heads share a single set of key and value pro-
jections, thus reducing the size of the KV cache
during inference as displayed in Figure 8. This
design significantly reduces memory usage and
computational overhead.

While multi-query attention has been previously
implemented with FlashAttention-2 (Dao, 2024),
it is not currently integrated into PyTorch’s native
attention modules, and, to our knowledge, there
has been no publicly available experimentation or
analysis of FLASHATTENTION’s performance with
MQA, nor any implementation of MQA for the
original FLASHATTENTION. To address these gaps,
we have extended our Triton FLASHATTENTION
kernel to implement multi-query attention.

To retain the memory and compute benefits of
MQA in our Triton-based kernel, we avoid broad-
casting the key and value tensors across all heads
by manipulating the indexing logic within the at-
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Figure 4: Peak memory usage comparison of 16-head MHA forward pass in non-causal and causal settings
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transformer trained on WikiText-103 with both matmul
attention and Triton FLASHATTENTION Kernels
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Figure 6: Peak memory usage comparison of 16-head
multi-query attention in causal setting, forward pass.

tention kernel. Specifically, we configure the mem-
ory layout such that the key and value tensors are
treated as shared across heads by assigning a zero
stride along the head dimension, effectively reusing
the same data without explicit replication.

We compare our MQA implementation against
off-the-shelf implementations as well as our own
MHA implementation. Most off-the-shelf imple-
mentations (such as the original FLASHATTEN-

TION paper and PyTorch scaled dot product im-
plementation) do not inherently support MQA and
thus must be run with expanded K/V or broadcast-
ing.

We find that our implementation is slightly bet-
ter than existing implementations. In particular, as
shown in Fig. 6, we use the least memory out of
all implementations due to the absence of explicit
key/value duplication across heads. This optimiza-
tion also minimizes memory bandwidth pressure,
contributing to the superior compute throughput
over our MHA implementation shown in Fig. 7.

We note one surprising aspect of our result: the
memory reduction associated with MQA compared
to our MHA implementation is less significant than
expected. Specifically, in the MHA setting, mem-
ory usage at peak includes storage for the Q, K,
V, and output (O) tensors, whereas in MQA, the
K and V tensors are shared across heads and thus
contribute negligibly to the overall footprint. Thus,
we would expect memory usage to approximately
halve, but we observe much more modest savings.
Inspecting the graph, we observe that there is a
fixed overhead across all implementations which
limits the visible benefit of removing per-head K
and V. We hypothesize that this overhead origi-
nates from the PyTorch allocator’s strategy of pre-
emptively reserving large memory blocks to satisfy
future allocations, overwhelming the actual mem-
ory allocation at small scales. This hypothesis is
validated by running a memory profiler for our
MQA and MHA implementations, finding that the
memory reserved far exceeds memory allocated.
Table 1 shows that MQA with FLASHATTENTION
attains allocated memory savings of 40-45%, near
the theoretical maximum.
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Figure 7: Runtime (TFLOP/s) comparison of 16-head MQA forward pass in non-causal and causal settings.
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Figure 8: Comparison of Multi-Head Attention (MHA)
and Multi-Query Attention (MQA). In MHA (left), each
head has distinct query, key, and value projections. In
MQA (right), while each head retains its own query
projection, all heads share a single set of key and value
projections, reducing memory and computation over-
head during inference.

MQA

4 Discussion

Our reproduction and extension of the original
FLASHATTENTION algorithm, three years after
its introduction, demonstrates the importance of
[O0-aware attention mechanisms in modern trans-
former systems. Despite being implemented in
Triton, our kernel achieves throughput and memory
efficiency that are not far behind highly optimized
implementations such as PyTorch’s current scaled
dot-product attention, which uses FlashAttention-2
as its backend. This performance is especially no-
table given the constraints of our MIG-partitioned
A100 setup, and underscores the strength of the
original algorithm’s design principles.

These results reaffirm a key insight from prior
work: memory bandwidth, not raw compute, is the
primary bottleneck in attention. By fusing mul-

Allocated
MQA MHA MQA MHA

1024 0.02 0.03 0.27 0.29
2048 0.04 0.07 0.29 0.32
4096 0.08 0.13 030 0.37
8192 0.15 027 035 046

Seq Len Reserved

Table 1: Peak GPU memory allocated and reserved (GB)
for our MQA and MHA implementations.

tiple memory-bound operations into a single pass
and minimizing reads and writes to high-bandwidth
memory (HBM), FLASHATTENTION reduces both
latency and peak memory consumption. Our ex-
periments suggest that this advantage persists on
modern hardware, and our use of Triton’s autotun-
ing further shows how such kernels can be made
portable and performant across diverse GPU con-
figurations.

Our extension of the kernel to support multi-
query attention (MQA) also fills a practical gap.
While MQA is widely adopted in modern large
language models for inference efficiency, it has
not been natively supported in some popular imple-
mentations of the original FLASHATTENTION. Our
adaptation preserves the core memory and compute
benefits by avoiding key-value duplication across
heads and highlights the flexibility of our imple-
mentation in adapting to emerging model architec-
tures.

Empirically, we also show that training dynam-
ics remain stable. Our transformer trained on
WikiText-103 converges to a comparable validation
perplexity whether it uses standard matmul-based
attention or our Triton-based FLASHATTENTION
kernel. This indicates that IO-aware optimizations
can be adopted without sacrificing model quality
or convergence behavior.
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A Related Work

I0-Aware Runtime Optimization. Transformer
models are often bottlenecked by memory band-
width rather than compute. FLASHATTENTION
addresses this by reducing reads and writes
to high-bandwidth memory through tiling and
kernel fusion (Dao et al., 2022). FlashAttention-2
improves on this by better partitioning work across
threads and supporting variable-length sequences
(Dao, 2024), while FlashAttention-3 introduces
asynchronous execution and FP8 support for
further speedups (Shah et al., 2024). Other
I0-aware efforts include vLLM, which introduces
PagedAttention to treat key-value memory as a
paged structure, minimizing fragmentation and
improving KV cache management during inference
(Kwon et al., 2023). Additionally, FlashDecod-
ing++ proposes GPU-specific optimizations for
autoregressive decoding, such as asynchronous
softmax and pipelined memory access, to reduce
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latency and boost throughput (Hong et al., 2024).

Efficient ML Models via Structured and
Low-Rank Matrices. Reducing the complexity of
core matrix operations has become a key area of
optimization for large models. Performer replaces
softmax attention with kernelized linear attention,
lowering complexity to linear in sequence length
(Choromanski et al., 2022). Linformer and
Nystromformer utilize low-rank projections
or approximations of the attention matrix to
compress representation power while preserving
expressiveness (Wang et al., 2020; Xiong et al.,
2021). Scatterbrain combines sparse and low-rank
structures for better tradeoffs in speed and accuracy
(Chen et al., 2021).

Efficient Transformers. Transformer models have
become the backbone of many state-of-the-art ap-
plications but are often resource-intensive. Efforts
to optimize these models include architectural
modifications and training strategies. For instance,
the Primer architecture introduces squared ReLLU
activations and depthwise convolutions, resulting
in reduced training costs without compromising
performance (So et al., 2022). EfficientViT pro-
poses a memory-efficient vision transformer with
cascaded group attention, enhancing throughput
while maintaining accuracy (Cai et al., 2024).

Quantization and Sparse Training. To deploy
machine learning models on resource-constrained
devices, quantization and sparsity are employed
to reduce model size and computation. PTQ4ViT
offers a method to quantize models after training
while considering sparsity patterns to maintain ac-
curacy (Yuan et al., 2024). ZeroQuant(4+2) intro-
duces a novel FP6-centric post-training quantiza-
tion strategy that bridges the accuracy gap between
INT4 and FP16, enabling efficient deployment of
large generative models without fine-tuning (Wu
et al., 2023).

B Algorithm Details

Forward-Pass Pseudocode

Algorithm 1 FLASHATTENTION (Forward Pass)

Require: Q, K,V ¢ RY*?4 in HBM; on-chip

SRAM of size M

I: Bo+ [%], By« min([{1].d)

2: Initialize O < Opnwxg, ¢ < Oy, m <
(—o0)n

3: Partition:

s QT = {Bﬂ] blocks Q1, .. ., Qr,

K,V = T, = | | blocks K, V;

5

6: 0,4, m — T, blocks O;, ¢;, m;
7. for j = 1to 1, do
8
9

Load K, V; to SRAM
fori: =1to T, do

10: Load Q;, O;, ¢;, m; to SRAM

11: Sij — QZK;—

12: mij + rowmax(S;;)

13: l?z‘j — exp(Sij - ﬁlij)

14: l;j < rowsum(P;;)

15: mi < max(m;, m;;)

16: f‘;ew — 6mi_m?ewgi + emis _muewgij
17: O, « emiTmi O, + e 7m?ew].32‘jVj
18: Ci <= 0%, my < mi™V

19: Write O;, ¢;, m; to HBM

20: end for

21: end for

22: return O

In this algorithm, Q, K,V € R4 are the query,
key, and value matrices, respectively, stored in
high-bandwidth memory (HBM). The output
matrix O € RV*9 holds the result of the attention
computation and is initialized to zero. The vector
¢ € RV stores cumulative normalization factors
for each row, while m € RY tracks the running
row-wise maximum of the attention logits for
numerical stability. The block sizes B. and
B, determine how many rows or columns are
processed in each iteration, constrained by the
available on-chip SRAM of size M. For efficient
streaming, matrices are partitioned into 7). row
blocks (indexed by i) and 7. column blocks
(indexed by j), allowing the algorithm to load and
compute on small chunks of data sequentially.
During each step, Pij contains unnormalized
attention weights for block (i, j), while /m;; and
Zij contain the row-wise maximum and the sum
of the exponentiated logits, respectively. These
are used to compute new normalization constants
mi®, ;" and to update the output block O;

7
accordingly.



Proof of 10-Complexity of FlashAttention

Proof. We model the IO complexity in terms of
memory transfers between fast on-chip memory
(SRAM of size M) and slow off-chip memory
(HBM). The objective is to count the number of
words transferred from HBM to SRAM during the
computation of attention.

In the standard attention mechanism, we com-
pute

Attention(Q, K, V) = softmax(QK ")V,

where Q, K,V € RV*? The computation in-
volves forming QK" € RY*N | which requires
reading all of Q and K, each of size Nd, followed
by computing softmax over each row and multiply-
ing the result with V. Assuming that Nd > M,
the SRAM cannot hold the full Q, K, or V, nor the
intermediate QK " matrix, which has size N2. As
a result, data must be frequently loaded from HBM.
In an idealized streaming model, each of Q, K, V,
and QK contributes to the IO cost. Hence, the
total IO complexity is ©(Nd+ N?) HBM accesses.

In contrast, FLASHATTENTION avoids explicitly
materializing QK | by computing attention using
a tiling strategy that fits intermediate computations
into SRAM. It partitions Q and K into blocks of
size B x d, such that Bd < M, and processes atten-
tion blockwise. For each block of Q, the algorithm
iterates over all blocks of K and computes partial
results, which are normalized and accumulated on
the fly. Each block of Q and K is loaded from
HBM only once per pairwise interaction, leading
to an 1O cost proportional to the number of block
pairs.

The total number of block pairs is (N/B)?, and
each pair involves reading O(Bd) data. Thus, the
total 10O cost is

N N%d
O((=) Bd]|=0—].
(5)-20) o ()
Since B is chosen to be the largest value such that

Bd < M, we have B = ©(M/d), giving an over-
all IO cost of

°(arin) = (5

Therefore, FLASHATTENTION  requires
O(N?d>?M~1) HBM accesses, completing the
proof. |

C Backward-Pass

Algorithm 2 FLASHATTENTION Backward Pass

Require: Matrices Q, K, V,0,dO € RV*4 jp
HBM; vectors £, m € RY in HBM; SRAM of
size M ; softmax scaling 7 € R; masking func-
tion mask; dropout probability pqrop; RNG
state R from forward pass
Set RNG state to R
B.+ [#£], B, + min ([£].d)
Partition:

Q=T = {Bﬂ] blocks Q;, K,V —

T. = | 4 | blocks K, V;

5: 0,dO — T, blocks O;,dO;, and
€, m — gi, m;

6: Initialize dQ < 0«4, partitioned into blocks
dQ;

7: Initialize dK,dV < Op g, partitioned into
blocks dK;,dV;

8: for j =1toT.do

: Load K;, V; to SRAM
10: Initialize

B

temporary  accumulators:
dK;, dV; < OBch
11: fori=1to T, do
12: Load Q;, O;,d0O;, ¢;, m; to SRAM
13: Sij — T QzK;r
14: S?]?aSked <« mask(S;;)

15: Pij — diag(&)_l 'eXp(S?;aSked —mi)
16: Sample dropout mask Z;; € RB-*Be
with values T=pare; W-P- 1 — pdrop. €lse 0
17: P?;mpped < P;j0Z;; >Hadamard

product
18: AV « dV/ + (PP TdO;
19: dO; + dO,V;
20: D; < rowsum(dO; o O;)
21: Sij « Pijo (dO, — D;)
22: Write dQ; + dQ,+7-S;;K; to HBM
23: dK/ + dK); + 7-S];Q

24: end for

25: Write dK; < dK},
HBM

26: end for

27: returndQ,dK,dV

de — dVg to

Variable Descriptions. Q, K,V are the query,
key, and value matrices from the forward pass,
while O is the output matrix and dO is its upstream
gradient. Vectors ¢ and m are the normalization
constants computed in the forward pass to ensure



numerical stability. 7 is the softmax scaling fac-
tor (generally d—1/2). mask(-) applies an attention
mask (e.g., causal or key-padding). pgrop is the
dropout rate, and R is the saved random number
generator state from the forward pass to ensure con-
sistent dropout behavior. Matrices are partitioned
into row blocks (B,.) and column blocks (B,.) to fit
in SRAM. Intermediate variables such as P;; repre-
sent attention weights, Z;; is the sampled dropout
mask, and dV;, dK;- are partial gradients that ac-
cumulate over row blocks .

Theorem 2 (10 Complexity of FLASHATTENTION
Backward Pass). Let N be the sequence length,
d the attention head dimension, and M the size
of on-chip SRAM, where d < M < Nd. Then
the standard matrix multiplication-based attention
backward pass requires

O(Nd + N?)

HBM (high-bandwidth memory) accesses, whereas
the FLASHATTENTION backward pass requires

only
N2d?
o (%)
M
HBM accesses.

Results. We extend our evaluation to include the
backward pass of multi-head attention. As shown
in Figure 9, our Triton-based FLASHATTENTION
kernel remains highly memory-efficient in the
backward setting. Across all sequence lengths
and both masking regimes, our implementation
consistently uses less memory than naive baselines.

This is attributable to the recomputation strategy
adopted in the FLASHATTENTION backward
algorithm, which avoids materializing the full
attention or softmax matrices during the backward
pass. Instead, key statistics from the forward pass
(the row-wise max and normalization constants)
are used to rederive gradients on the fly. This re-
computation significantly reduces high-bandwidth
memory (HBM) traffic and minimizes intermediate
buffer allocation.

Additionally, our kernel fuses gradient compu-
tation across Q, K, and V within a single pass
over the SRAM tile, avoiding redundant loads and
improving memory locality. These optimizations
preserve the sub-quadratic memory footprint of
FLASHATTENTION, even when the full backward
graph is evaluated.
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Figure 9: Peak memory usage of 16-head attention back-
ward pass in non-causal and causal settings.



